Category Archives: Single Cell Analysis

A review of Haining Lab’s work: Loss of ADAR1 in tumors overcomes resistance to immune checkpoint blockade

Ever questioned why the immune system does not attack our own double-stranded RNA? Speaking of this, we should not ignore the role of ADAR, the gene that encodes Double-stranded RNA-specific adenosine deaminase enzyme, responsible for converting adenosines to inosines (A -> I editing) in double-stranded RNA (dsRNA) substrates. ADAR was… Read more »

BBrowser: the software to resolve major challenges in single-cell RNA-seq data analysis

Single-cell RNA-seq technologies have opened up a completely new era for transcriptomic studies. For the first time ever, scientists can look at individual transcriptomic profiles of millions of cells, and better understand how each cell functions in a tissue. Yet science is confronting bigger challenges analyzing these massive amounts of… Read more »

Cell Ranger Problems and Hera-T

      1 Comment on Cell Ranger Problems and Hera-T

Today we finished the first version of Hera-T, a new single-cell RNA-seq quantification algorithm. We developed Hera-T by improving challenging alignment errors that Cell Ranger has. As a result, Hera-T is more accurate than Cell Ranger. Hera-T is more than 10 times faster than Cell Ranger, while consuming just a small amount of… Read more »

Principal component analysis explained simply

As we are entering the era of Big Data, everyone and their moms seem to be talking about PCA. All the papers you read mention PCA (with lots of jargon, of course). Half of the seminars you’ve been to this month touch on PCA. Your boss/collaborators suggest trying PCA on your data. “What… Read more »